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ABSTRACT 

CHALCOGENIDE MICRO AND NANOSTRUCTURES  

AND APPLICATIONS 

Ozan Aktaĸ 

Ph.D. in Physics 

Supervisor: Prof. Dr. Mehmet Bayēndēr 

August, 2014 

 

Chalcogenides, which are glasses consist of S, Se and Te elements, are promising 

materials for photonics as silicon for modern electronics, due to their extraordinary 

material properties such as high nonlinearity and wide mid-IR transparency. However, 

the biggest barrier before their full extend technological exploitation is the difficulty 

in utilization of these unique material properties within photonic devices with various 

forms of desired geometries including nanowires, microspheres, and microdisks as 

necessitated by unique optical functionalities for specific applications, some of which 

are optical microresonators, modulators, and photodetection devices. 

In this study, the author explore new routes for the fabrication of on-chip photonic 

elements with chalcogenides and consider a low cost high-yield production method 

with a compatible and extendable integration phase. The study illustrates production 

of chalcogenide optical cavities embedded in a polymer fiber, on-chip integration of 

the cavities having spherical, spheroidal, and ellipsoidal boundaries, and results of 

their optical characterizations. Besides the fabrication of active photonic devices with 

electro-optical capabilities, tapered chalcogenide fibers are also considered as 

evanescent couplers for the resonators of high index materials.  

In addition, a large area chalcogenide nanowire based photodetection device is 

demonstrated including fabrication of photoconductive pixels, design of an electronic 

readout circuit, development of a custom software for a pattern detection application. 

Keywords: Chalcogenides glasses, nanowires, optical microresonators, asymmetric 

resonant cavities, electro-optical Kerr effect, modulators, whispering gallery mode 

resonators, photonics, fiber drawing.    
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ÖZET 

KALKOJEN MĶKRO VE NANOYAPILAR 

VE UYGULAMALARI  

Ozan Aktaĸ 

Fizik, Doktora 

Tez Yöneticisi: Prof. Dr. Mehmet Bayēndēr 

Aĵustos, 2014 

S, Se ve Te elementlerinin bileĸiminde yer aldēĵē camlardan olan kalkojenler, 

y¿ksek doĵrusal olmayan kērēlma indisleri ve geniĸ orta-enfraruj ge­irgenliĵi gibi sēra 

dēĸē malzeme ºzellikleri sayesinde, silikonun modern elektronikte oynadēĵē rol gibi 

fotonik için gelecek vadeden malzemelerdir. Fakat ileri teknolojik kullanēmlarēnēn 

önündeki en büyük engel, bu malzeme özelliklerinin fotonik aygētlarda mikrotel, 

mikroküre veya mikrodisk gibi özel uygulamalar için eĸsiz optik iĸlevselliklerin 

gerektirdiĵi biçimlerde kullanēlmasēndaki zorluklardēr. Optik resonatörler, 

mod¿latºrler ve ēĸēk algēlama aygētlarē bu uygulamalarēn bazēlarēdēr. 

Bu ­alēĸmada, yazar kalkojen tabanlē b¿t¿nleĸmiĸ fotonik elemanlarēn ¿retimi 

konusunda yeni yollar arayēĸēndadēr ve bu yolda diĵer teknolojiler ile uyumlu ve 

geniĸletilebilir b¿t¿nleĸme aĸamalarē olan d¿ĸ¿k maliyetli ­ok verimli bir ¿retim 

yºntemini ele almaktadēr. Çalēĸma, kalkojen optik kavitelerin bir polimer fiber 

i­erisinde ¿retimlerinden devre ¿zerine k¿resel, k¿remsi ve elipsoidal ĸekillerde 

b¿t¿nleĸtirilmesine ve optik ºzelliklerin deĵerlendirilmesi kadar yapēlanlarē 

göstermektedir. Elektro-optiksel özellikleri olan aktif fotonik elemanlarēn ¿retiminin 

yanēnda bir de y¿ksek kērēlma katsayēlē resonatºrlere ēĸēk eĸlemek i­in inceltilmiĸ 

kalkojen fiberlerin üretilmesini ele almaktadēr. 

Bunlara ilaveten, geniĸ alanlē kalkojen nano tel tabanlē bir ēĸēk algēlama aygētēnēn 

gösterimi yapēlmēĸtēr. Bu gºsterim fotoiletken algēlama h¿crelerinin fabrikasyonunu, 

okuyucu elektronik devre tasarēmēnē ve bir ĸekil algēlama uygulamasē i­in geliĸtirilen 

özel ama­lē yazēlēmē i­ermektedir. 

Anahtar kelimeler:  Kalkojen camlar, nanoteller, optik ­ēnla­lar, asimetrik kaviteler, 

elektro-optik etki, mod¿latºrler, fēsēldayan galeri modlarē, fotonik, fiber ­ekimi.
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Chapter 1  

 

Introduction  

1.1. The Promise of Chalcogenides 

Silicon is the workhorse of the electronics industry which have amazingly 

transformed the life we live in. Thanks to this special material, today our global world 

is more connected than ever after the advent of the internet, cell phones, and relevant 

electronic applications. However, ever increasing needs to store, manipulate and 

transfer enormous amount of daily produced data, demands new solutions that can 

overcome the fundamental limitations of silicon and electronics. Solutions generally 

require a paradigm shift in the selection of materials and methodologies for handling 

information. Theoretically, chalcogenides are promising materials possessing the 

potential to fulfill all the needs and requirements due to their unique material 

properties, and photonics with integrated chalcogenide elements capable of electro-

optical and all-optical effects at same time is expected to transform the future the way 

electronics did. 

Chalcogenides, which are amorphous semiconductors containing chalcogen 

elements of Se, S, and Te, have already been exploited in various applications 

including solar cells [1], sensors [2], electronics [3], and photonics [4]. Optical data 

storage based on chalcogenides  have been very beneficial in memory applications [5], 

and recently, chalcogenide phase change memory technology [6] have been attracted 

huge interest for the fabrication of the ideal memory of the future, which is ultrafast, 

nonvolatile, scalable, low cost, and has very low power operation and long life cycle. 

Inherent high bandwidth of the light is the key factor enabling transfer of data at 

high rates as utilized in optical communications, however light signal needs to be 
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modulated to carry meaningful information. Photonic integrated circuits (PIC) can 

modulate light at data rates well beyond the capability of electronics (> 1 Tb/s) using 

all optical means [7, 8] which can benefit from optical properties of chalcogenides 

such as ultra-fast high Kerr nonlinearity, low two photon absorption and wide IR 

transparency [9]. Combining all-optical and electro-optical properties in resonant 

cavities can be the ultimate solution for ever increasing needs of communication, and 

interfacing with electronics can be obtained without causing any bottlenecks. 

In addition, chalcogenides have been used as host media for laser applications since 

they have low phonon energy and can be doped by rare earth elements [10]. Nonlinear 

optical applications have also exploited chalcogenides in applications such as 

generation of  supercontinuum [11] and Raman lasing [12]. 

Developing new methods for material synthesis and harnessing this special material 

properties in the form of specific geometries such as nanowires and microwires for 

fabrication of phase change memories and photodetectors, and microsphere and 

microdisks for photonic applications, are the current field of intense research still 

waiting some answers for the problems hindering ultimate utilizations of 

chalcogenides. 

This thesis is devoted to developing new strategies and concepts enabling 

chalcogenides to be utilized in novel photonic applications. Starting with chalcogenide 

fiber drawing for the production of micro and nano structures, we used chalcogenide 

fibers as a versatile media to produce functional structures in different forms including 

wires, spheres, spheroids, ellipsoids, disks and tapers for photonic applications. 

Chalcogenide nanowires were produced by a new fabrication method we recently 

reported. Integration of selenium fibers on a very large scale electrical circuits was 

achieved, and nanowire based photodetection device was demonstrated as an 

application. 

Chalcogenide resonators have been drawn an increasing interest for nonlinear 

optical applications. However, duality between production and integration phase of 

these resonators have been hold back the applications so far. What resolved in this 

thesis is finding a way out of this dilemma, hence paving the way for a myriad 

applications for photonics. Chalcogenides have been generally used for their all optical 

properties in photonic applications, but their quadratic electro-optical properties is 

somehow ignored up to now. Therefore, we also focus on building electro-optical 

resonator based chalcogenide photonic devices in this thesis.   
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There have been an enormous need for high index evanescent couplers to couple 

light efficiently into high index material resonators. Although recent studies have made 

some progress for the fabrication of tapers from high index fibers, still some problems 

are waiting to be addressed such as splicing to silica fibers or mechanical instabilities. 

We believe that we have resolved all these issues after developing an approach for the 

fabrication and interfacing of the chalcogenide fibers.  

1.2. Thesis Outline 

The contents of this thesis are organized in a historical sequence, which was 

followed by the author during lifetime of this research adventure. Contents of 

individual chapters are given and any collaboration with other members of Bayēdēr 

Group is stated explicitly. 

Chapter 2 is an introductory chapter giving information about chalcogenides, basic 

methodology used in the material synthesis, fundamentals of fiber drawing, and 

importance of iterative size reduction technique as a new nanotechnology tool for the 

fabrication of nano and microstructures. 

Chapter 3 demonstrates design and application of a device, which is the first of its 

kind, a large are nanowire based photodetection circuitry. Production of selenium 

fibers using iterative size reduction technique were done by Mehmet Kanēk and Dr. 

Mecit Yaman. Integration of nanowires and optical characterizations were done in 

collaboration with Erol Özgür. 

Chapter 4 gives a theoretical background for Whispering Gallery Modes 

resonators. Simulations results illustrate WGMs in sphere microcavities. 

Chapter 5 gives theoretical background for evanescent coupling to optical 

resonators, and information about fabrication of tapered fiber couplers. Experimental 

setup used for optical measurements are also presented to give a complete picture for 

optical coupling and characterization of the resonators before the subject is mentioned 

in relevant chapters. 

Chapter 6 explains a new method developed for the production and integration of 

chalcogenides cavities, which is expected to give a momentum in this field. Optical, 

material and surface characterizations of the produced cavities are also considered. 

COMSOL simulations of in-fiber microsphere formation based on Plateau-Rayleigh 

instability were done in collaboration with Dr. Osama Tobail. 
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Chapter 7 shows a new direction for the production of active chalcogenide cavities 

with emphasis on their electro-optical capabilities. A FEM based simulation of WGMs 

in an electro-optic cavity is illustrated, and production steps towards realization of on-

chip active chalcogenide disk cavities are discussed with ups and downs of 

experimental approach. 

Chapter 8 discusses three different approaches for the tapering of chalcogenides, 

and finally represents an ideal solution to the problem, which is of paramount 

importance for the achievement of efficient optical coupling into cavities of high index 

material. 

Chapter 9 summarizes what have been done through the thesis and gives a quick 

glimpse for future directions. 

Appendix A gives MATLAB codes used for some calculations and simulations 

used in Chapter 4 and Chapter 5.  
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Chapter 2  

 

Fiber Drawing As a Method for  

Fabricating Chalcogenide Nano and 

Microstructures 

2.1. Chalcogenide Glasses 

Chalcogenide glasses (ChGs) are important amorphous semiconductors containing 

at least one of chalcogen elements (sulphur, selenium and tellurium) from group 6A 

of periodic table, which are covalently bonded to glass formers such as As, Ge, Ga, 

and P. Due to the large composition space enabling optimization of material properties 

as demanded by specific applications, chalcogenide have been utilized in a broad range 

of technology and research areas such as photonics [4], phase change memory [6] and 

sensors [2]. 

ChGs have low phonon energies due to the covalently bonded heavy atoms with 

low vibrational energies, making them good hosts for rare earth dopants such as Nd3+ 

and Er3+ [10]. Therefore, they have lower softening temperatures and hardness, and 

higher thermal expansion coefficients [13]. However, their long wavelength cut-off 

lies in the mid-IR region [14], making their transparency in the range of 1.5-20 µm as 

shown in Figure 2.1. In addition, they have high refractive indices (n = 2.2-3.4) and 

nonlinear refractive indices n2 two or three orders of magnitude higher than that of 

silica. Superior optical and material properties of chalcogenides have been extensively 

used for ultrafast all-optical applications [15, 16] in fiber form [17] or as integrated 

waveguides in photonic circuits [18].  
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Figure 2.1: Infrared transmission spectra for various materials including ChGs [14]. 

 

Chalcogenide glasses can be deposited on substrates [19] by thermal evaporation, 

sputtering or wet spin deposition in order to make waveguides and resonators, which 

are building blocks of photonics circuits. However, all these methods require post-

process anneal to obtain bulk glass like properties due to the changes in material 

stoichiometry during the process. More recently ultra-fast pulse laser deposition has 

been reported to circumvent these problems [20]. 

Fiber drawing of chalcogenides with other materials is also possible [21] by 

harnessing the rheological properties of these materials such as thermo-mechanical 

compatibility with high temperature engineered polymers, and their resistance to 

crystallization. Chalcogenide fibers have been used in a myriad applications [14] , 

which are nonlinear fiber optic amplifiers, laser power delivery, chemical sensing, 

imaging, etc. Recently fiber drawing has drawn attention and exploited in a òstack and 

drawò fashion to produce micro-structured chalcogenide glass holey fibers [22], and 

chalcogenide micro and nanowires [23]. Fiber drawing as a method for fabricating 

chalcogenide nano and microstructures for photonics, phase change memory, and 

sensors will be an indispensable tool for science and technology in the future.  
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2.2. Glass Synthesis 

Chalcogenide glasses synthesized in this thesis are Se, As2Se3 and As2S3. 

Selenium is used due to its photoconductive property for the fabrication of a 

photodetection device based on nanowires. As2Se3 and As2S3 are used in optics and 

photonics due to their superior optical properties such as high nonlinearity, wide IR 

transparency, and etc. For all materials, starting form is a rod of chalcogenide glass 

which is used as a preform for thermal fiber drawing. Glass synthesis steps are given 

basically for As2Se3. 

The amorphous As2Se3 rod used in fiber drawing is prepared from high purity 

As and Se elements (Sigma Aldrich) using sealed-ampule melt-quenching technique 

[24]. The glove box stored (see Figure 2.2(a)) pure elements of materials As (wt% 40) 

and Se (wt% 60) are placed into a quartz tube under nitrogen atmosphere. In order to 

remove surface oxides and impurities, the tube is heated above 300 ºC under vacuum 

condition (see Figure 2.2(b)). After the tube is cooled down to room temperature, it is 

sealed under ~10-3 Torr vacuum. The sealed tube is placed in a rocking oven (see 

Figure 2.2(c)) and heated up to 800 ºC at a rate of 2 ºC. min-1. After the oven is held at 

this temperature at vertical position for 24 hours, it is rocked at least for 6 hours to 

increase homogeneity. Subsequently, oven is cooled down to  600 ºC and the tube is 

quenched in water to form As2Se3 intermetallic glass rod with 10 cm length and 6 mm 

diameter. 

 

Figure 2.2: Chalcogenide glass synthesis. Process consists of three steps (a) material 

selection, (b) material purification and sealing, (c) rocking and homogenization. 
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2.3. Thermal Fiber Drawing 

Fiber drawing process has two stages: fabrication of the initial preform structure 

and production of fibers by thermal drawing of the preform under high stress and 

temperature. As shown in Figure 2.3(a), a preform structure with 6 mm core diameter 

and 30 mm cladding diameter, which is actually an exact macroscopic copy of the 

fiber, is prepared by rolling 100 µm thick polyethersulfone (PES) films around an 

As2Se3 rod. Before consolidation process, the preform is held under 2×10-2 Torr 

vacuum at 180 ºC for 4 hours in order to evacuate trapped air between polymer layers. 

Then, rolled films are consolidated in a vacuum oven at 252 ºC for 30 minutes under 

2×10-2 Torr vacuum. Fiber drawing process is executed in a custom made fiber tower 

which consists of a preform feeding mechanism, preform position alignment stage, 

furnace, optical thickness measurement system, tension measurement and a capstan. 

See Figure 2.3(b) for actual setup. Approximately 3 MPa tensile stress is applied to 

the preform during heating of the preform up to 300 ºC above glass transition 

temperature of As2Se3 and PES. Picture of the produced As2Se3 core PES cladding 

fibers are given in Figure 2.3(c). Volume reduction of the preform determines the final 

diameter of fiber, and is controlled by the tensile force and the furnace temperature. 

 

Figure 2.3: (a) Optical picture of a preform before and after thermal drawing. (b) Fiber 

tapering tower and basic components. (c) Chalcogenide core PES cladding fibers 

produced by thermal drawing. 
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2.4. Iterative Size Reduction Technique 

We recently reported a new top-to-bottom nanotechnology fabrication method 

called iterative size reduction (ISR) method [23] to obtain polymer encapsulated 

globally oriented ultra-long micro and nanowires made of various materials ranging 

from polymers and semiconductors to metals, with improved piezoelectric, phase 

change, and photoconductive material properties. In this study, selenium nanowires, 

which are used as photoconductive elements in the pixel formation of a photodetection 

device [25] (see Chapter 3), are produced using ISR technique. For the production of 

As2Se3 single core polymer cladding fibers of different diameters and core-cladding 

ratios, only first two steps of ISR technique are followed with single fiber in every 

step. Post-fabrication thermal treatments to chalcogenide fibers are conducted to 

obtain different morphologies from single core micro fibers [26, 27]. 

ISR technique is basically stacking and redrawing of produced fibers in each 

successive steps as shown schematically in Figure 2.4. Nanowire array production 

from a macroscopic rod by iterative thermal size reduction starts with Step 1: A 

macroscopic cylindrical rod (diameter 10 mm, length 200 mm) is fabricated from a 

chalcogenide material that is to be transformed into micro and nanostructures. A 

thermo-mechanically suitable polymer sheet (PES) is tightly rolled around the rod until 

the final diameter is 30 mm. The multimaterial structure is then thermally consolidated 

under vacuum above the glass transition temperatures of both materials, in order to 

fuse the polymer sheets and the chalcogenide rod to obtain a preform. Finally the 

preform is drawn into a fiber to obtain hundreds of meters of polymer encapsulated 

chalcogenide microwires. Step 2: After stacking previously produced fibers of desired 

number, diameter and length, a polymer cladding is rolled around the stacked fibers, 

and consolidated. Second step drawing results in submicron wire arrays in a polymer 

fiber. Step 3: The same procedure, as followed in the second Step is applied again one 

more time to obtain hierarchically positioned arrays of smaller diameter nanowires. 

Chalcogenide nanowires produced by ISR method can be seen in Figure 2.5. 

  



10 

 

 

Figure 2.4: Steps of iterative size reduction technique resulting into one dimensional 

micro and nano-structures encapsulated by a polymer jacket.  

 

 

 
 

 

Figure 2.5: (a) A chalcogenide semiconductor rod is reduced to (b, c) hundreds of 

meters of single 200 µm diameter wire, (d, e) 30 wires of 5 µm diameter and (f, g) 

1.000 wires of 250 nm diameter. Nanowires are extracted from polymer matrix by 

dissolving the polymer encapsulation in organic solvents, retaining their global 

alignment. Inset: Transmission electron microscopy image of a single 32-nm-thick 

nanowire.
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Chapter 3  

 

Large Area Chalcogenide Nanowire 

Based Photodetection Device 

3.1. Introduction  

Nanowires have long been among the most promising building blocks for future 

low power, high speed electronic devices due to their superlative physical properties. 

Albeit huge efforts towards their design, fabrication and characterization for a 

considerable time, it is striking that to date large scale production and integration of 

nanowire devices have not emerged, where their assembly into functional devices is 

identified as the main barrier before their large scale utilization. Although, there have 

been reports on nanowire integration into electronic circuitry [28-30]; we also believe 

there is ample room for various strategies towards this end. In this chapter, we 

demonstrate the feasibility of a new kind of indefinitely long, aligned, polymer 

encapsulated nanowire arrays, produced using a recently reported technique of 

iterative size reduction method [23], for integration into functional devices. Using the 

technique we are able to produce many different types of nanowires of various material 

compositions including chalcogenides, semiconductors, polymers or metals, with 

various functionalities such as photoconductivity, piezoelectricity, or structural 

coloring [31]. These nanowire arrays with their unique composition and geometry are 

also convenient for large area nanowire based device construction. 

As a proof of principle, we constructed a chalcogenide nanowire based large area 

photodetection device [25]. We assembled polymer fibers containing hundreds of 

continuous parallel selenium nanowires manually on a lithographically defined circuit, 
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and then we removed the polymer by dissolving it in an organic solvent, in a controlled 

manner. The exposed nanowires remained over the electrical contacts as a monolayer, 

forming the photodetection units composed of hundreds of parallel aligned nanowires. 

We constructed the device within, but not restricted to, an area of 1 cm2, containing 

10x10 pixels. After integration to a designed electronic readout hardware, we managed 

to detect and display alphabetic characters on the sensor surface exposed to the dark 

field illumination of some alphabetic characters. The research can be extended towards 

many directions, since this method could be used to cover very large surfaces with 

various types of nanowires, and the process is substrate independent, which might 

facilitate production of nanowire based devices on flexible and non-planar surfaces. 

3.2. Fabrication and Characterization of Selenium Wires  

We utilized the iterative thermal size reduction technique (see Chapter 2) for 

production of polyethersulfone (PES) polymer encapsulated indefinitely long and 

axially aligned selenium nanowires. A bundle of selenium nanowires with removed 

polymer jacket by dichloromethane (DCM) can be seen in Figure 3.1. 

 

 

Figure 3.1: SEM image of the amorphous selenium nanowire array. 

 

Selenium is an interesting chalcogenide material which is convenient to thermal 

drawing to obtain fibers [23], as well as it has photoconductivity [32], light induced 

crystallization, and phase dependent electrical conductivity [33]. Selenium has 

photosensitive conductivity in crystalline state, and can be crystallized by thermal 
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annealing [34] or exposing to specific organic reagents including pyridine, aniline, 

piperidine, which are all ring compounds containing nitrogen [35]. In order to 

investigate size dependent properties of selenium fibers produced by thermal drawing, 

three different set of selenium wires, which were designated by Step 1, Step 2 and Step 

3 according to their decreasing radii, were selected. The first two step microwires were 

crystallized by thermal annealing, while the third step nanowires were crystallized by 

diluted pyridine as a 50% aqueous solution.   

Photoconductivity of the micro and nanowires with different sizes were compared 

by measuring of the photocurrent under illumination with broadband light source using 

setup shown in Figure 3.2. Electrical measurements were performed with Keithley 

2400 Source-Meter controlled by a computer program written in C#. The software can 

be used to capture time series data of current I and voltage V simultaneously or to 

measure I-V curves. A 50 W light source was used for illumination. Electrical contacts 

to the micro and nanowires were formed by applying silver paint. Current was 

monitored while applying a constant voltage of 10 Volt, and light source was on-off 

modulated by a switch. The time series data of photoconductance are given in Figure 

3.3. All data were normalized according to the corresponding dark current values, 

which were on the order of picoamperes. As can be deduced form the 

photoconductance measurements of selenium wires of different radii, the wires have a 

size dependent photo-sensitivity and photo-responsiveness. Selenium wires having 

submicron diameters have superior properties when compared to the wires of micron 

size diameters. Consequently, selenium nanowires were used as a photosensitive 

elements in the construction of a photodetection device as described in the following 

sections. 
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Figure 3.2: Electrical characterization setup used for the measurements of photoconductive 

properties of Se nanowires. 

 

 

 

 

Figure 3.3: Size-dependent photoconductivity of selenium nanowires. Light was on-off 

modulated and meantime photocurrent was recorded at applied voltage of 10 Volts. 
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3.3. Integration of Selenium Nanowire Arrays 

Selenium nanowire bundles produced by iterative size reduction technique have 

very convenient properties for manual manipulation such as being embedded and 

globally oriented in polymer fibers which can be handled easily. Using this 

convenience, we manually integrated selenium wires of 500 nm in diameter onto a 

lithographically defined electrical circuitry, which was produced by gold deposition 

on a chip of Pyrex glass and lift-off method resulting into electrode pairs and pathways 

(see Figure 3.4). The chip of the circuitry consists of a 10×10 pixel array in an area of 

1 cm2. 

 

Figure 3.4: Macroscopic assembly of nanowires over a lithographically defined 

circuitry. (a) First step of nanowire integration to a macroscopic circuitry is manual 

alignment and accommodation of polymer fiber arrays containing hundreds of 

nanowires embedded inside. Second step is dissolving the polymer encapsulation and 

dispersion of nanowires over electrode pairs as monolayers. Third step is 

crystallization of the selenium nanowires with pyridine solution. (b) Optical 

microscope image of gold electrical pathways for signal and ground electrodes on the 

circuit. 

 

We manually assembled fibers on the chip and after stabilizing their position with 

Teflon tape, we immersed them in DCM with a slight tilt. Without disturbing the 

orientation of the exposed individual nanowires, we gently washed the chip with DCM 

to remove the PES remnants. For the crystallization process, we immersed the chip 

with nanowires into a 50% by volume aqueous pyridine solution overnight. SEM 

micrographs of resulting crystalline selenium nanowires over the circuitry and a single 

pixel of the circuitry are shown in Figure 3.5. 
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Figure 3.5: SEM image of the photodetection circuit with nanowire based pixels. (a) 

SEM image of crystallized selenium nanowires lying over ground and readout 

electrodes of the circuitry forming pixels. (b) SEM image of a single pixel, composed 

of hundreds of photoconductive selenium nanowires aligned over electrode pairs, 

which have a separation of 10 micrometers. A high resolution SEM image of 

nanowires can be seen in the inset. 
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3.4. Design and Demonstration of a Large Area 

Photodetection Device 

To use a circuitry composed of nanowire-based pixel array as an imaging device, 

photocurrent of each pair electrode needs to be measured and interpreted for the 

construction of corresponding image pixel in gray scale. To accomplish this goal, we 

designed an electronic hardware to capture photoresponse of each and every pixel and 

to send relevant data to a custom application software for image construction. 

Schematics of the circuit designed by CadSoft Eagle PCB design software and printed 

circuit board layout are given in Figure 3.6 and Figure 3.7, respectively.  

The circuit is consists of seven 16-channel analog multiplexer/demultiplexer 

(74HC4067) with four address inputs, one USB-to-UART converter (FT232R), a 

microprocessor with digital signal processing capabilities (dsPIC30F4011), a voltage 

regulator, and two LEDs for power and data transfer status. Firmware of the 

microprocessor is written by using C programing language in MPLAB integrated 

development environment (IDE). Every pair electrode, which are in a voltage divider 

configuration to convert photocurrent into voltage signal, are connected to the input 

port of the microprocessor through analog multiplexers. Seven input channels of 

microprocessor are multiplexed by four address input ports of the multiplexers and 

concurrently sampled.   Voltage signal of every channel are then 10 bit digitized and 

transferred as ASCII data via USB. Total number of channels with seven analog 

multiplexers is 112, however, twelve of the channels are used as spare ports replacing 

some channels with cross talk. Using USB-USART converter chip, data is transferred 

with 19200 baud rate and can be read as if there is an assigned serial COM port. 

Surface mount packages (SMD) for electronic components are used in printed circuit 

board which has two copper plates at both sides. Electrical connections between 

channel ports and contact pads of the photodetection circuitry on the electronic 

hardware are made using soldering with thin enameled copper wires. Device is 

designed to be powered by USB only or external power source, which can be selected 

by a switch on the board. Final status of electronic hardware with nanowire integrated 

circuity can be seen in Figure 3.8. 
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Figure 3.6: Electrical circuit design of nanowire based photodetection device. 

 

 

 

Figure 3.7: Printed circuit board layout of nanowire based photodetection device. 






























































































































































































































